三角函数

函数定义

trigonometric_func_definition

函数图像

trigonometric_func_chart_01

trigonometric_func_chart_02

trigonometric_func_chart_03

函数关系

  • tanα=sinαcosαtanα = \dfrac{sinα}{cosα}

  • sin2α+cos2α=1sin^{2}α + cos^{2}α = 1


  • 1+sin2α=(sinα+cosα)21 + sin2α = (sinα + cosα)^{2}

  • 1sin2α=(sinαcosα)21 - sin2α = (sinα - cosα)^{2}


更多关系请参考如下六边形记忆图

trigonometric_func_hexagon_memory_chart_01

trigonometric_func_hexagon_memory_chart_02

函数特殊值

trigonometric_func_special_values_01

trigonometric_func_special_values_02

边角关系

正弦定理

asinA=bsinB=csinC=2R\dfrac{a}{sinA} = \dfrac{b}{sinB} = \dfrac{c}{sinC} = 2R

余弦定理

  • a2=b2+c22bccosAa^{2} = b^{2} + c^{2} - 2bccosA
  • b2=a2+c22accosBb^{2} = a^{2} + c^{2} - 2accosB
  • c2=a2+b22abcosCc^{2} = a^{2} + b^{2} - 2abcosC

  • cosA=b2+c2a22bccosA = \dfrac{b^{2} + c^{2} - a^{2}}{2bc}

  • cosB=a2+c2b22accosB = \dfrac{a^{2} + c^{2} - b^{2}}{2ac}

  • cosC=a2+b2c22abcosC = \dfrac{a^{2} + b^{2} - c^{2}}{2ab}

基本公式

诱导公式

  • sin(2kπ+α)=sinαkZsin(2kπ + α) = sinα,k∈Z
  • cos(2kπ+α)=cosαkZcos(2kπ + α) = cosα,k∈Z
  • tan(2kπ+α)=tanαkZtan(2kπ + α) = tanα,k∈Z

  • sin(α)=sinαsin(-α) = -sinα
  • cos(α)=cosαcos(-α) = cosα
  • tan(α)=tanαtan(-α) = -tanα

  • sin(π+α)=sinαsin(π + α) = -sinα
  • cos(π+α)=cosαcos(π + α) = -cosα
  • tan(π+α)=tanαtan(π + α) = tanα

  • sin(πα)=sinαsin(π - α) = sinα
  • cos(πα)=cosαcos(π - α) = -cosα
  • tan(πα)=tanαtan(π - α) = -tanα

  • sin(π2+α)=cosαsin(\dfrac{π}{2} + α) = cosα

  • cos(π2+α)=sinαcos(\dfrac{π}{2} + α) = -sinα

  • tan(π2+α)=cotαtan(\dfrac{π}{2} + α) = -cotα

  • sin(π2α)=cosαsin(\dfrac{π}{2} - α) = cosα

  • cos(π2α)=sinαcos(\dfrac{π}{2} - α) = sinα

  • tan(π2α)=cotαtan(\dfrac{π}{2} - α) = cotα

TIP

奇变偶不变,符号看象限。
可参考:三角函数公式解析open in new window

和差角公式

  • sin(α+β)=sinαcosβ+cosαsinβsin(α + β) = sinαcosβ + cosαsinβ
  • sin(αβ)=sinαcosβcosαsinβsin(α - β) = sinαcosβ - cosαsinβ
  • cos(α+β)=cosαcosβsinαsinβcos(α + β) = cosαcosβ - sinαsinβ
  • cos(αβ)=cosαcosβ+sinαsinβcos(α - β) = cosαcosβ + sinαsinβ

  • tan(α+β)=tanα+tanβ1tanαtanβtan(α + β) = \dfrac{tanα + tanβ}{1 - tanαtanβ}

  • tan(αβ)=tanαtanβ1+tanαtanβtan(α - β) = \dfrac{tanα - tanβ}{1 + tanαtanβ}

倍角公式

  • sin2α=2sinαcosαsin2α = 2sinαcosα

  • cos2α=cos2αsin2α=12sin2α=2cos2α1cos2α = cos^{2}α - sin^{2}α = 1 - 2sin^{2}α = 2cos^{2}α - 1

  • tan2α=2tanα1tan2αtan2α = \dfrac{2tanα}{1 - tan^{2}α}

半角公式

  • sinα2=±1cosα2sin\dfrac{α}{2} = \pm \sqrt{\dfrac{1 - cosα}{2}}

  • cosα2=±1+cosα2cos\dfrac{α}{2} = \pm \sqrt{\dfrac{1 + cosα}{2}}

  • tanα2=±1cosα1+cosα=sinα1+cosα=1cosαsinαtan\dfrac{α}{2} = \pm \sqrt{\dfrac{1 - cosα}{1 + cosα}} = \dfrac{sinα}{1 + cosα} = \dfrac{1 - cosα}{sinα}

降幂公式

  • sin2α=1cos2α2sin^{2}α = \dfrac{1 - cos2α}{2}

  • cos2α=1+cos2α2cos^{2}α = \dfrac{1 + cos2α}{2}

  • tan2α=1cos2α1+cos2αtan^{2}α = \dfrac{1 - cos2α}{1 + cos2α}

和差化积公式

  • sinα+sinβ=2sinα+β2cosαβ2sinα + sinβ = 2sin\dfrac{α + β}{2}cos\dfrac{α - β}{2}

  • sinαsinβ=2cosα+β2sinαβ2sinα - sinβ = 2cos\dfrac{α + β}{2}sin\dfrac{α - β}{2}

  • cosα+cosβ=2cosα+β2cosαβ2cosα + cosβ = 2cos\dfrac{α + β}{2}cos\dfrac{α - β}{2}

  • cosαcosβ=2sinα+β2sinαβ2cosα - cosβ = -2sin\dfrac{α + β}{2}sin\dfrac{α - β}{2}

  • tanα+tanβ=sin(α+β)cosαcosβtanα + tanβ = \dfrac{sin(α + β)}{cosαcosβ}

积化和差公式

  • sinαcosβ=12[sin(α+β)+sin(αβ)]sinαcosβ = \dfrac{1}{2}[sin(α + β) + sin(α - β)]

  • cosαsinβ=12[sin(α+β)sin(αβ)]cosαsinβ = \dfrac{1}{2}[sin(α + β) - sin(α - β)]

  • sinαsinβ=12[cos(αβ)cos(α+β)]sinαsinβ = \dfrac{1}{2}[cos(α - β) - cos(α + β)]

  • cosαcosβ=12[cos(αβ)+cos(α+β)]cosαcosβ = \dfrac{1}{2}[cos(α - β) + cos(α + β)]

万能公式

  • sinα=2tanα21+tan2α2sinα = \dfrac{2tan\dfrac{α}{2}}{1 + tan^{2}\dfrac{α}{2}}

  • cosα=1tan2α21+tan2α2cosα = \dfrac{1 - tan^{2}\dfrac{α}{2}}{1 + tan^{2}\dfrac{α}{2}}

  • tanα=2tanα21tan2α2tanα = \dfrac{2tan\dfrac{α}{2}}{1 - tan^{2}\dfrac{α}{2}}

辅助角公式

Last Updated:
Contributors: Vsnoy