初等代数

因式分解

  • (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc
  • (a±b)3=a3±3a2b+3ab2±b3(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}

  • a3b3=(ab)(a2+ab+b2)a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})
  • a3+b3=(a+b)(a2ab+b2)a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})
  • anbn=(ab)(an1+an2b+an3b2++abn2+bn1)a^{n} - b^{n} = (a - b)(a^{n - 1} + a^{n - 2}b + a^{n - 3}b^2 + \cdots + ab^{n - 2} + b^{n - 1})

  • k=1nk2=16n(n+1)(2n+1)\displaystyle \sum_{k=1}^n k^2 = \dfrac{1}{6}n(n + 1)(2n + 1)

  • k=1nk3=[12n(n+1)]2\displaystyle \sum_{k=1}^n k^3 = [\dfrac{1}{2}n(n + 1)]^{2}

指数

  • axay=ax+ya^{x} a^{y} = a^{x + y}

  • axay=axy\dfrac{a^{x}}{a^{y}} = a^{x - y}

  • (ab)x=axbx(ab)^{x} = a^{x}b^{x}

  • (ax)y=axy(a^{x})^{y} = a^{xy}

对数

  • ab=elnab=eblnaa^{b} = e^{lna^{b}} = e^{blna}

  • alogaN=Na^{log_{a}N} = N

  • logaMn=nlogaMlog_{a}M^{n} = nlog_{a}M

  • loga(MN)=logaM+logaNlog_{a}(MN) = log_{a}M + log_a{N}

  • logaMN=logaMlogaNlog_{a}\dfrac{M}{N} = log_{a}M - log_{a}N

  • logab=logcblogcalog_{a}b = \dfrac{log_{c}b}{log_{c}a}(a > 0 且 a ≠ 1; c > 0 且 c ≠ 1; b > 0)

不等式

  • 对于 x\forall x,有 exx+1e^{x} ≥ x + 1
  • 对于 x0\forall x ≥ 0,有 xsinxx ≥ sinx
  • 对于 x>0\forall x > 0,有 x1lnxx - 1 ≥ lnx

  • 设 a > b > 0,n > 0,则 an>bna^{n} > b^{n}

  • 设 a > b > 0,n 为正整数,则 an>bn\sqrt[n]{a} > \sqrt[n]{b}

  • ab<cd\dfrac{a}{b} < \dfrac{c}{d},则 ab<a+cb+d<cd\dfrac{a}{b} < \dfrac{a + c}{b + d} < \dfrac{c}{d}


  • 基本不等式及衍生

    • a+b2ab\dfrac{a + b}{2} ≥ \sqrt{ab}(其中 a > 0,b > 0;当且仅当 a = b 时等号成立)

    • a+b+c3abc3\dfrac{a + b + c}{3} ≥ \sqrt[3]{abc}(其中 a > 0,b > 0,c > 0;当且仅当 a = b = c 时等号成立)

    • a2+b22a+b2ab21a+1b\sqrt{\dfrac{a^{2} + b^{2}}{2}} ≥ \dfrac{a + b}{2} ≥ \sqrt{ab} ≥ \dfrac{2}{\dfrac{1}{a} + \dfrac{1}{b}}(其中 a > 0,b > 0;当且仅当 a = b 时等号成立)

    • 4ab(a+b)22(a2+b2)4ab ≤ (a + b)^{2} ≤ 2(a^{2} + b^{2})(当且仅当 a = b 时等号成立)

    • a2+b2+c213(a+b+c)2ab+bc+caa^{2} + b^{2} + c^{2} ≥ \dfrac{1}{3}(a + b + c)^{2} ≥ ab + bc + ca(当且仅当 a = b = c 时等号成立)


  • 绝对值不等式

    • aaa-|a| ≤ a ≤ |a|

    • a+ba+b|a + b| ≤ |a| + |b|

    • ababa+b|a| - |b| ≤ |a - b| ≤ |a| + |b|

    • ba+ab2|\dfrac{b}{a} + \dfrac{a}{b}| ≥ 2(当且仅当 |a| = |b| 时等号成立)

数列

类型

等差数列

  • an=a1+(n1)d=am+(nm)d=dn+(a1d)nNa_{n} = a_{1} + (n - 1)d = a_{m} + (n - m)d = dn + (a_{1} - d),n∈N^{*}

  • Sn=n(a1+an)2=na1+n(n1)2d=d2n2(a1d2)nnNS_{n} = \dfrac{n(a_{1} + a_{n})}{2} = na_{1} + \dfrac{n(n - 1)}{2}d = \dfrac{d}{2}n^{2} - (a_{1} - \dfrac{d}{2})n,n∈N^{*}

等比数列

  • an=a1qn1=amqnm (a1,q0)a_{n} = a_{1}q^{n - 1} = a_{m}q^{n - m} \space (a_{1},q ≠ 0)

  • Sn={a1(1qn)1q (q1),na1 (q=1)S_{n}=\begin{cases} \dfrac{a_{1}(1 - q^{n})}{1-q} \space (q ≠ 1), \\ na_{1} \space (q = 1) \end{cases}

求和

裂项相消法

  • 1n(n+1)=1n1n+1\dfrac{1}{n(n + 1)} = \dfrac{1}{n} - \dfrac{1}{n + 1}

  • 1n(n+k)=1k(1n1n+k)\dfrac{1}{n(n + k)} = \dfrac{1}{k} (\dfrac{1}{n} - \dfrac{1}{n + k})

  • 1nm(n+k)=1k(1nm1m(n+k))\dfrac{1}{nm(n + k)} = \dfrac{1}{k} (\dfrac{1}{nm} - \dfrac{1}{m(n + k)})

  • 1(2n1)(2n+1)=12(12n112n+1)\dfrac{1}{(2n - 1)(2n + 1)} = \dfrac{1}{2} (\dfrac{1}{2n-1} - \dfrac{1}{2n + 1})

  • 1n(n+1)(n+2)=12(1n(n+1)1(n+1)(n+2))\dfrac{1}{n(n + 1)(n + 2)} = \dfrac{1}{2} (\dfrac{1}{n(n + 1)} - \dfrac{1}{(n + 1)(n + 2)})


  • 1a+b=1ab(ab)\dfrac{1}{\sqrt{a} + \sqrt{b}} = \dfrac{1}{a - b} (\sqrt{a} - \sqrt{b})

  • 1n+n+1=n+1n\dfrac{1}{\sqrt{n} + \sqrt{n + 1}} = \sqrt{n + 1} - \sqrt{n}

  • 1n+n+k=1k(n+kn)\dfrac{1}{\sqrt{n} + \sqrt{n + k}} = \dfrac{1}{k} (\sqrt{n + k} - \sqrt{n})


  • ak=1a1(ak+1ak)a^{k} = \dfrac{1}{a - 1} (a^{k + 1} - a^{k})

  • nn!=(n+1)!n!n \cdot n! = (n + 1)! - n!

排列、组合和二项式定理

Last Updated:
Contributors: Vsnoy