碎片记录

导数定义

  • f(x0)=limx0f(x0+x)f(x0)xf'(x_{0}) = \lim \limits_{\triangle x \to 0} \dfrac{f(x_{0} + \triangle x) - f(x_{0})}{\triangle x}

  • f(x0)=limh0f(x0+h)f(x0)hf'(x_{0}) = \lim \limits_{h \to 0} \dfrac{f(x_{0} + h) - f(x_{0})}{h}

  • f(x0)=limxx0f(x)f(x0)xx0f'(x_{0}) = \lim \limits_{x \to x_{0}} \dfrac{f(x) - f(x_{0})}{x - x_{0}}

微分定义

  • y=Ax+o(x)=dy+o(x)(x0A为常数,Ax称为y的线性主部,o(x)x的高阶无穷小)\triangle y = A \triangle x + o(\triangle x) = dy + o(\triangle x) \\ (\triangle x \rightarrow 0,A 为常数,A \triangle x 称为 \triangle y 的线性主部,o(\triangle x) 是 \triangle x 的高阶无穷小)

  • dy=Ax=f(x)dx(dx等价于x)dy = A \triangle x = f'(x) dx,(dx 等价于 \triangle x)

常用极限

  • limx0sinxx=1\lim \limits_{x \to 0} \dfrac{sinx}{x} = 1

  • limx(1+1x)x=e\lim \limits_{x \to \infty}(1 + \dfrac{1}{x})^{x} = e


  • limx0(1+x)1x=e\lim \limits_{x \to 0}(1 + x)^{\frac{1}{x}} = e

  • limx(11x)x=1e\lim \limits_{x \to \infty}(1 - \dfrac{1}{x})^{x} = \dfrac{1}{e}

  • limx(1+ax)bx=eab\lim \limits_{x \to \infty}(1 + \dfrac{a}{x})^{bx} = e^{ab}

  • limx(1+ax)bx+c=eab\lim \limits_{x \to \infty}(1 + \dfrac{a}{x})^{bx + c} = e^{ab}


  • limnnn=1\lim \limits_{n \to \infty} \sqrt[n]{n} = 1

  • limx0ax1x=lna\lim \limits_{x \to 0} \dfrac{a^x - 1}{x} = lna


  • limxa0xn+a1xn1++anb0xm+b1xm1++bm={0, n<ma0b0, n=m (a0b00), n>m\lim \limits_{x \to \infty} \dfrac{a_{0}x^{n} + a_{1}x^{n - 1} + \cdots + a_{n}}{b_{0}x^{m} + b_{1}x^{m - 1} + \cdots + b_{m}} = \begin{cases} 0, \space n < m, \\ \dfrac{a_{0}}{b_0},\space n = m \space (a_{0}b_{0} ≠ 0) \\ \infty,\space n > m \end{cases}

常用导数

  • (x)=12x(\sqrt{x})' = \dfrac{1}{2\sqrt{x}}

  • (ex)=ex(e^{x})' = e^{x}

  • (lnx)=1x(lnx)' = \dfrac{1}{x}


  • (xa)=axa1(x^{a})' = ax^{a - 1}

  • (ax)=axlna(a^{x})' = a^{x}lna

  • (logax)=1xlna(log_{a}x)' = \dfrac{1}{xlna}


  • (lnx)=1x(ln|x|)' = \dfrac{1}{x}

  • (xx)=xx(1+lnx)(x^{x})' = x^{x}(1 + lnx)


  • (sinx)=cosx(sinx)' = cosx
  • (cosx)=sinx(cosx)' = -sinx
  • (tanx)=sec2x(tanx)' = sec^{2}x

  • (cotx)=csc2x(cotx)' = -csc^{2}x
  • (secx)=secxtanx(secx)' = secxtanx
  • (cscx)=cscxcotx(cscx)' = -cscxcotx

  • (arcsinx)=11x2(arcsinx)' = \dfrac{1}{\sqrt{1 - x^{2}}}

  • (arccosx)=11x2(arccosx)' = -\dfrac{1}{\sqrt{1 - x^{2}}}

  • (arctanx)=11+x2(arctanx)' = \dfrac{1}{1 + x^{2}}

  • (arccotx)=11+x2(arccotx)' = -\dfrac{1}{1 + x^{2}}

常用不定积分

  • kdx=kx+C\int kdx = kx + C(k 为常数)

  • exdx=ex+C\int e^{x}dx = e^{x} + C


  • xadx=1a+1xa+1+C\int x^{a}dx = \dfrac{1}{a + 1}x^{a + 1} + C(a ≠ -1)

  • axdx=axlna+C\int a^{x}dx = \dfrac{a^{x}}{lna} + C(a > 0,a ≠ 1)

  • 1xdx=lnx+C\int \dfrac{1}{x}dx = ln|x| + C(x ≠ 0)


  • sinxdx=cosx+C\int sinxdx = -cosx + C

  • cosxdx=sinx+C\int cosxdx = sinx + C

  • tanxdx=lncosx+C\int tanxdx = -ln|cosx| + C

  • cotxdx=lnsinx+C\int cotxdx = ln|sinx| + C

  • secxdx=lnsecx+tanx+C\int secxdx = ln|secx + tanx| + C

  • cscxdx=lncscxcotx+C\int cscxdx = ln|cscx - cotx| + C


  • sec2xdx=tanx+C\int sec^{2}xdx = tanx + C

  • csc2xdx=cotx+C\int csc^{2}xdx = -cotx + C


  • secxtanxdx=secx+C\int secxtanxdx = secx + C

  • cscxcotxdx=cscx+C\int cscxcotxdx = -cscx + C


  • 11+x2dx=arctanx+C\int \dfrac{1}{1 + x^{2}}dx = arctanx + C

  • 1a2+x2dx=1aarctanxa+C\int \dfrac{1}{a^{2} + x^{2}}dx = \dfrac{1}{a}arctan\dfrac{x}{a} + C(a ≠ 0)


  • 11x2dx=arcsinx+C\int \dfrac{1}{\sqrt{1 - x^{2}}}dx = arcsinx + C

  • 1a2x2dx=arcsinxa+C\int \dfrac{1}{\sqrt{a^{2} - x^{2}}}dx = arcsin\dfrac{x}{a} + C(a > 0)


  • 1a2x2dx=12alna+xax+C\int \dfrac{1}{a^{2} - x^{2}}dx = \dfrac{1}{2a}ln\left| \dfrac{a + x}{a - x} \right| + C

  • 1x2±a2dx=lnx+x2±a2+C\int \dfrac{1}{\sqrt{x^{2} \pm a^{2}}}dx = ln|x + \sqrt{x^{2} \pm a^{2}}| + C

常用等价无穷小

当 x → 0 时,

  • xsinxtanxarcsinxarctanxln(1+x)ex1x \sim sinx \sim tanx \sim arcsinx \sim arctanx \sim ln(1 + x) \sim e^{x} - 1 重点

  • 1cosx12x21 - cosx \sim \dfrac{1}{2} x^{2} 重点

  • 1cosαxα2x21 - cos^{α}x \sim \dfrac{α}{2} x^{2}


  • ax1xlnaa^{x} - 1 \sim xlna

  • (1+x)a1ax(1 + x)^{a} - 1 \sim ax 重点

  • loga(1+x)xlnalog_{a}(1 + x) \sim \dfrac{x}{lna}

  • ln(1+x)x12x2ln(1 + x) - x \sim -\dfrac{1}{2} x^{2}


  • xsinx16x3x - sinx \sim \dfrac{1}{6} x^{3}

  • xtanx13x3x - tanx \sim -\dfrac{1}{3} x^{3}

  • xarcsinx16x3x - arcsinx \sim -\dfrac{1}{6} x^{3}

  • xarctanx13x3x - arctanx \sim \dfrac{1}{3} x^{3}

  • tanxsinx12x3tanx - sinx \sim \dfrac{1}{2} x^{3}

Last Updated:
Contributors: Vsnoy